TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN

<u>Ecuación diferencial ordinaria de orden n</u>.- Es una relación entre la variable "x", la función "y" y las sucesivas derivadas de ésta, es decir $F(x,y,y',y'',.....y^{(n)}) = 0$. Una solución es una función y = f(x) que sustituida en la ecuación, la verifica.

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Ecuaciones de variables separadas

Tienen la forma $f_1(x)dx = f_2(y)dy$. La solución es $\int f_1(x)dx + C = \int f_2(y)dy$ <u>Ejemplo:</u> $(4x - x^2)dx - ydy = 0$. Integrando $\int (4x - x^2)dx - \int ydy = C$ \rightarrow $2x^2 - \frac{x^3}{3} - \frac{y^2}{2} = C$

Ecuaciones de variables separables

Tienen la forma $f_1(x)\cdot f_2(y)dx=g_1(x)\cdot g_2(y)dy$. Se transforma en una de las anteriores dividiendo por $f_2(y)\cdot g_1(x)$.

Ejemplo: $y(1 + e^x)dy - (y^2 + 1)e^x dx = 0$. Dividimos por $(1 + e^x)(y^2 + 1)$ y queda $\frac{y}{v^2 + 1}dy - \frac{e^x}{1 + e^x}dx = 0$. Integrando $\frac{1}{2}\ln(y^2 + 1) - \ln(1 + e^x) = C$

Ecuación lineal de primer orden

Es de la forma y' + $P(x) \cdot y = Q(x)$

Para resolverla, hallaremos dos funciones u y v (de x) que cumplan $y = u \cdot v$. Derivando y sustituyendo en la ecuación queda:

$$u'v + uv' + P(x) \cdot uv = Q(x) \qquad \Longleftrightarrow \quad [u' + P(x)u]v + uv' = Q(x) \qquad (I)$$

 $\text{Hacemos entonces } u' + P(x)u = 0, \text{ de donde } \frac{u'}{u} = -P(x) \iff \ln u = -\int P(x) dx \implies u = e^{-\int P(x) dx}.$

Sustituyendo en (I):

$$v'e^{-\int P(x)dx} = Q(x) \rightarrow v' = Q(x)e^{\int P(x)dx} \rightarrow v = \int Q(x)e^{\int P(x)dx}dx$$

Así pues, la solución sería $y=\,e^{-\int P(x)dx}\cdot\int Q(x)e^{\int P(x)dx}dx$

Ecuaciones diferenciales homogéneas

Una función f(x.y) es homogénea de grado n si $f(tx, ty) = t^n f(x,y)$

Una ecuación diferencial de la forma $P(x,y)\,dx+Q(x,y)\,dy=0$ es homogénea si P y Q son funciones homogéneas del mismo grado. Se resuelven haciendo el cambio $y=u\cdot x\,$ de donde $\,dy=u\cdot dx+x\cdot du\,$. Al sustituir se transforma en una de variables separables

<u>Ejemplo</u>: $(x^3 + y^3) dx - 3xy^2 dy = 0$. Es homogénea de grado 3. Haciendo el cambio mencionado: $(x^3 + u^3x^3)dx - 3xu^2x^2(udx + xdu) = 0$. Dividiendo por x^3 : $(1 + u^3)dx - 3u^2(udx + xdu) = 0$ de donde $(1 - 2u^3)dx - 3xu^2du = 0 \rightarrow$

Ecuaciones diferenciales exactas

Una ecuación P(x, y)dx + Q(x, y)dy = 0 es diferencial exacta si existe una función F(x,y) = C, (que será la solución) cuya diferencial es la ecuación, es decir $\frac{\partial F}{\partial x} = P$ y $\frac{\partial F}{\partial y} = Q$.

Supondremos que las primeras derivadas parciales de F son continuas. Luego se cumplirá que

$$\boxed{\frac{\partial \mathbf{P}}{\partial \mathbf{y}} = \frac{\partial^2 \mathbf{F}}{\partial \mathbf{x} \partial \mathbf{y}} = \frac{\partial^2 \mathbf{F}}{\partial \mathbf{y} \partial \mathbf{x}} = \frac{\partial \mathbf{Q}}{\partial \mathbf{x}}}$$

Para resolverla, como $\frac{\partial F}{\partial x} = P \rightarrow \int Pdx + C(y) = F$ (II), donde C(y) es una

constante arbitraria que depende de y. Derivando respecto de y: $\frac{\partial \int Pdx}{\partial y} + C'(y) = Q \iff$

 \leftrightarrow C'(y) = Q - $\frac{\partial \int P dx}{\partial y}$. Integrando respecto de y obtenemos C(y). Finalmente sustituyendo en (II) obtenemos F

Ejemplo: $(4x^3y^3-2xy)\ dx+(3x^4y^2-x^2)\ dy=0$, es diferencial exacta pues $\frac{\partial P}{\partial y}=12x^3y^2-2x\quad y\quad \frac{\partial Q}{\partial x}=12x^3y^2-2x\ .$ Como $\int (4x^3y^3-2xy)dx=\ x^4y^3-x^2y\ +\ C(y).$ Luego $3x^4y^2-x^2=3x^4y^2-x^2+C'(y)\leftrightarrow C'(y)=0 \leftrightarrow C(y)=K$, luego La solución es $x^4y^3-x^2y=K$

Factor integrante

Supongamos que la ecuación Pdx + Qdy = 0 no es diferencial exacta pero que podemos encontrar una función $\mu = \mu(x,y)$ tal que $\mu Pdx + \mu Qdy = 0$ sí lo sea. Diremos que μ es un factor integrante. En este caso se tendrá que $\frac{\partial \mu}{\partial y} \cdot P + \mu \frac{\partial P}{\partial y} = \frac{\partial \mu}{\partial x} Q + \mu \frac{\partial Q}{\partial x}$ (III)

En el caso particular que $\mu = \mu(x)$ dependa sólo de x, la expresión (III) queda $\mu \frac{\partial P}{\partial y} = \mu' Q + \mu \frac{\partial Q}{\partial x} \iff \frac{\mu'}{\mu} = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) \text{ de donde podemos obtener } \mu.$

En el caso particular que $\mu = \mu(y)$ dependa sólo de y, la expresión (III) queda $\mu'P + \mu \frac{\partial P}{\partial y} = \mu \frac{\partial Q}{\partial x} \longleftrightarrow \frac{\mu'}{\mu} = \frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \text{ de donde podemos obtener } \mu.$

Ejemplo: Hallar un factor integrante dependiente de x para la ecuación diferencial $(x+y^2)dx-2xydy=0$.

$$\begin{split} & \text{Calculamos} \quad \frac{\mu'}{\mu} = \frac{1}{Q} \bigg(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \bigg) = \frac{2y - (-2y)}{-2xy} = -\frac{2}{x} \quad \text{Integrando} \quad ln \, \mu = -2 \, ln \, x \; \; y \; de \; aqui \\ & ln \, \mu = ln \, x^{-2} \quad de \; donde \quad \mu = \frac{1}{x^{-2}} \, . \end{split}$$

Son de la forma $y' + P(x)y = Q(x)y^n$, donde n entero > 1. Dividiendo la ecuación por y^n queda. $y'y^{-n} + P(x)y^{1-n} = Q(x)$. Hacemos el cambio $y^{1-n} = z$ y derivando $(1-n)y^{-n} \cdot y' = z$ y derivando en la ecuación queda $\frac{1}{1-n}z' + P(x)z = Q(x)$, que es lineal de primer orden.

EJERCICIOS

1. Compruebe que $x^2 + y^2 = C$ es la solución general de la ecuación diferencial:

$$y' = -\frac{x}{y}$$
.

Solución.-

Derivando en la expresión $x^2 + y^2 = C$ obtenemos: $2x + 2yy' = 0 \rightarrow y' = -\frac{x}{y}$

Denotemos por y el ingreso en euros que se obtiene al vender x unidades de un producto. Si la tasa a la que varía el ingreso respecto al número de unidades vendidas viene dada por la ecuación diferencial:

$$y' + \frac{x^2}{1 - y^2} = 0,$$

obtener y en función de x, sabiendo que la venta de 1 unidad del producto produce un ingreso de 1 euro.

Solución.-

La ecuación diferencial la podemos escribir:

$$(y^2-1)dy = x^2dx$$
 e integrando: $\frac{1}{3}y^3 - y + C = \frac{1}{3}x^3 \leftrightarrow y^3 - x^3 - 3y + 3C = 0$

Puesto que si $x = 1 \rightarrow y = 1$, se tiene que 3C = 3, luego la solución es: $y^3 - x^3 - 3y + 3 = 0$.

3. Resolver la ecuación diferencial: $y' = y - lnx + \frac{1}{x}$

Solución.-

Es una ecuación lineal de primer orden. Hacemos $y = u \cdot v \rightarrow y' = u'v + uv'$. Sustituyendo en la ecuación: $u'v + uv' = uv - lnx + \frac{1}{x} \leftrightarrow v(u'-u) + uv' = -lnx + \frac{1}{x}$. Una

solución de u' – u = 0 es u = e^x, con lo que la ecuación queda e^xv'= – lnx + $\frac{1}{x} \leftrightarrow v' = -e^{-x} lnx + \frac{e^{-x}}{x}$. Resolviendo por partes se obtiene que v = e^{-x}lnx + C. Luego: $y = e^x(e^{-x} lnx + C) = lnx + Ce^x$

 Sea y el coste de producir x unidades de un libro. La tasa a la que varía el coste respecto a los libros producidos es

$$\frac{dy}{dx} = \frac{x^2y + y^3}{x^3} \,,$$

Hállese el coste en función del número de libros producidos, sabiendo que si se producen 5 unidades, el coste es de 10 euros.

Solución.-

Hacemos el cambio $y = ux \rightarrow \frac{dy}{dx} = \frac{du}{dx}x + u = u + u^3 \leftrightarrow \frac{du}{dx}x = u^3 \leftrightarrow \frac{du}{u^3} = \frac{dx}{x}$. Integrando: $-\frac{1}{2u^2} = \ln x + C_1$. Sustituyendo u: $\frac{x^2}{y^2} = -2\ln x + C \leftrightarrow y = \frac{x}{\sqrt{C - \ln x^2}}$. Para x = 5 tendremos $10 = \frac{5}{\sqrt{C - \ln 25}} \leftrightarrow C = \frac{1}{4} + \ln 25$. Luego $y = \frac{x}{\sqrt{\frac{1}{4} + \ln \frac{25}{x^2}}}$.

5. Resolver la ecuación diferencial: xdy = (x + y)dx

Solución.-

Podemos escribir la ecuación de la forma $y'-\frac{1}{x}y=1$, que resulta ser una ecuación lineal. Hacemos el cambio $y=u\cdot v$ y sustituyendo en la ecuación queda $v\left(u'-\frac{1}{x}u\right)+uv'=1$. Haciendo $u'-\frac{1}{x}u=0$, obtenemos que u=x, luego xv'=1, de donde $v'=\frac{1}{x}\to v=\ln x+C$. Así pues la solución de la ecuación diferencial es $y=x\ln x+Cx$.

6. Obtener la solución general de la ecuación diferencial: $(4x^2 - 14y)dx - 7xdy = 0$ Solución.-

$$\frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) = \frac{1}{-7x} \left(-14 + 7 \right) = \frac{1}{x} \quad \text{sólo depende de } x \text{ luego existe un factor integrante}$$

dependiente de x que es $\mu(x) = e^{\int_{-x}^{1} dx} = x$. Multiplicando por x la ecuación queda:

$$(4x^3-14xy)dx-7x^2dy=0 \rightarrow f(x,y)=\int (4x^3-14xy)dx=x^4-7x^2y+C(y) \rightarrow \frac{\partial f}{\partial y}=\\ =-7x^2+C'(y)=-7x^2, \text{ de donde }C'(y)=0 \rightarrow C(y)=-C. \text{ Así pues la solución general de la ecuación diferencial es }x^4-7x^2y=C.$$

7. Hallar un factor integrante que convierta en exacta la siguiente ecuación diferencial: $(3x^2 - y^2)dy - 2xydx = 0$

Solución.-

Puesto que $\frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = -\frac{4}{y}$ depende sólo de y, hay un factor integrante que depende sólo de y. Se tiene que $\ln \mu(y) = \ln y^{-4} \rightarrow \mu(y) = y^{-4}$.

8. Dada la ecuación diferencial 2xy' + y = 0, obtenga su solución hallando necesariamente un factor integrante.

Solución.-

Escribimos la ecuación en la forma ydx + 2xdy = 0. Como $\frac{1}{P} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) = \frac{1}{y}$ depende sólo de y, hay un factor integrante que depende sólo de y. Se tiene $\mu(y) = e^{\int_{y}^{1-dy}} = y$. Luego la ecuación $y^2 dx + 2xy dy = 0$ es diferencial exacta. Se tendrá que $f(x,y) = \int y^2 dx = y^2 x + C(y)$ $\rightarrow \frac{\partial f(x,y)}{\partial y} = 2xy + C'(y) = 2xy \rightarrow C'(y) = 0 \rightarrow C(y) = -C$. Así pues la solución general de la ecuación es $y^2 x = C$

9 Sea x el número de unidades fabricadas e y el coste de producción de un bien determinado. Sabiendo que la tasa a la que cambia el coste respecto al número de unidades producidas viene dado por la siguiente ecuación diferencial:

$$\frac{dy}{dx} = \frac{y}{x} - x + \frac{9}{x},$$

se pide calcular el coste en función de las unidades producidas, siendo el coste unitario de producción de 4€/Ud. cuando el número de unidades fabricadas es 3.

Solución.-

Escribamos la ecuación en la forma $(y-x^2+9)dx-xdy=0$. Puesto que $\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)=\frac{1}{-x}(1+1)=\frac{-2}{x}$, existe un factor integrante μ que depende sólo de x, tal que $\frac{\mu'}{\mu}=\frac{-2}{x}$ de donde $\ln\mu=\ln x^{-2}\to\mu=x^{-2}$. Así pues, la ecuación $\frac{y-x^2+9}{x^2}dx-\frac{x}{x^2}dy=0 \leftrightarrow \left(\frac{y}{x^2}-1+\frac{9}{x^2}\right)dx-\frac{1}{x}dy=0$ es diferencial exacta. Se tendrá que $\int \left(\frac{y}{x^2}-1+\frac{9}{x^2}\right)dx=\frac{y}{x^2}dx$ de donde $\int \left(\frac{y}{x^2}-1+\frac{9}{x^2}\right)dx$

C'(y) = 0
$$\rightarrow$$
 C(y) = -k. Luego la solución de la ecuación diferencial es $\frac{y}{x} + x + \frac{9}{x} = k$. El valor de $k = 4 + 3 + \frac{9}{3} = 10$. Así pues $\frac{y}{x} + x + \frac{9}{x} = 10 \leftrightarrow y = -x^2 + 10x - 9$.

Obtener la solución general de la ecuación diferencial:

$$\mathbf{y'} = \frac{\mathbf{x}^3 + \mathbf{y}^3}{3\mathbf{x}\mathbf{y}^2}.$$

Solución.-

Se trata de una ecuación homogénea. Haciendo $y = ux \rightarrow y' = u'x + u$. Sustituyendo:

$$u'x + u = \frac{1 + u^3}{3u^2} \leftrightarrow \frac{3u^2}{1 - 2u^3} du = \frac{1}{x} dx$$

Integrando:

$$\begin{split} &-\frac{1}{2}\ln\left|1-2u^3\right|=\ln\left|K_1x\right| \;\;\leftrightarrow\;\; \ln\frac{1}{\sqrt{1-2u^3}}=\ln\left|K_1x\right| \;\;\leftrightarrow\;\; \frac{1}{\sqrt{1-2u^3}}=\left|K_1x\right| \;\;\leftrightarrow\;\; 1-2u^3=\frac{K_2}{x^2} \;\;\leftrightarrow\;\; \\ &\leftrightarrow\;\; u^3=\frac{1}{2}+\frac{K}{x^2} \;\;\leftrightarrow\;\; u=\sqrt[3]{\frac{1}{2}+\frac{K}{x^2}}\;\;.\;\; Asi \;pues: \\ &y=\sqrt[3]{\frac{x^3}{2}+Kx} \end{split}$$

Resolver la ecuación diferencial:

$$y' - \frac{y}{2x} = 5x^2y^5.$$

Solución.-

Se trata de una ecuación de Bernoulli. Dividimos por $y^5 \rightarrow y'y^{-5} - \frac{1}{2x}y^{-4} = 5x^2$

Hacemos el cambio $z = y^{-4} \rightarrow z' = -4y^{-5}y' \rightarrow y^{-5}$ y'= $-\frac{1}{4}z'$. Sustituyendo en la ecuación queda $-\frac{1}{4}z' - \frac{1}{2x}z = 5x^2$ que ya es una ecuación lineal. Ponemos $z = u \cdot v \rightarrow$ z' = u'v + uv'. Sustituyendo de nuevo: $-\frac{1}{4}u'v - \frac{1}{4}uv' - \frac{1}{2v}uv = 5x^2 \leftrightarrow$ $\leftrightarrow v \left(-\frac{1}{4}u' - \frac{1}{2x}u \right) - \frac{1}{4}uv' = 5x^{2}. \text{ Hacemos } -\frac{1}{4}u' - \frac{1}{2x}u = 0 \\ \leftrightarrow \frac{u'}{u} = \frac{-2}{x} \\ \rightarrow \log u = \log x^{-2} \\ \rightarrow \frac{1}{4}u' - \frac{1}{2x}u' - \frac{1}$ \rightarrow u = x⁻². Luego la ecuación queda: $-\frac{1}{4}x^{-2}v' = 5x^2 \leftrightarrow v' = -20x^4 \leftrightarrow v = -4x^5 + C$. Así pues $z = -4x^3 + Cx^{-2}$, de donde $y = \frac{1}{\sqrt[4]{-4x^3 + Cx^{-2}}}$

12. Resolver la ecuación diferencial: $y' - y = xy^2$

Solución.-

Se trata de una ecuación de Bernoulli. Dividimos por $y^2 \rightarrow y'y^{-2} - y^{-1} = x$

Hacemos el cambio $z=y^{-1} \rightarrow z'=-y^{-2}y'$. Sustituyendo en la ecuación queda -z'-z=x que ya es una ecuación lineal. Ponemos $z=u\cdot v \rightarrow z'=u'v+uv'$. Sustituyendo de nuevo: $-u'v-uv'-uv=x \leftrightarrow v(-u'-u)-uv'=x$. Hacemos $u'=-u \leftrightarrow u=e^{-x}$. Luego la ecuación queda: $-e^{-x}v'=x \leftrightarrow v'=-xe^x$ que integrando por partes proporciona $v=-xe^x+e^x+C$.

Así pues
$$z = -x + 1 + Ce^{-x}$$
, de donde $y = \frac{1}{-x + 1 + Ce^{-x}}$