

Modelo de Ramsey (II)

Blanca Sanchez-Robles

Todos los derechos reservados

Esquema

Introducción

Supuestos del modelo:

- Preferencias
- tecnología

Discusión

Análisis del estado estacionario

Implicaciones

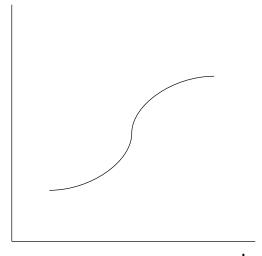
Extensiones

Apéndice

Introducción

Modelo de Ramsey: (Ramsey, 1928; Cass, 1965; Koopmans, 1965)

- Intuición: existe un bien que se puede consumir o ahorrar, convirtiéndolo así en consumo futuro.
 Considerando toda la trayectoria vital, ¿cuál es la cantidad óptima de consumo en cada momento del tiempo?
- Puede considerarse como:
 - Modelo de crecimiento neoclásico
 - Modelo de optimización de las decisiones de consumo y ahorro a lo largo de la vida
- Es un modelo <u>dinámico</u>: las variables son función del tiempo. Trabajamos en tiempo continuo: no cambia las implicaciones del análisis y lo simplifica.



1. La economía está compuesta por <u>individuos agrupados en familias idénticas o dinastías</u> de vida infinita:

Las familias de hoy y de mañana están unidas por vínculos intergeneracionales: tienen en cuenta la situación económica futura de sus descendientes (altruismo).

Modelo de agentes homogéneos o agentes representativos

2. <u>Las familias maximizan su utilidad total</u>

Función objetivo: expresión (1)

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$

$$0 < \rho < 1$$

u[c(t)]: utilidad instantánea

c(t): consumo de cada individuo

L(t): capta aspectos demográficos: número de miembros de cada familia

2. <u>Las familias maximizan su utilidad total descontada al momento presente</u>

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$

$$0 < \rho < 1$$
En el momento presente

2. Las familias maximizan su utilidad total, a lo largo de toda su vida, descontada al momento presente

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$

$$0 < \rho < 1$$

Una integral es una suma.

En este caso, entre:

- el momento actual
- el fin de la vida de la familia, suficientemente lejos en el tiempo como para que consideremos que las familias viven indefinidamente.

2. <u>La utilidad total es la suma de las utilidades instantáneas, que son función del consumo</u>

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$

$$0 < \rho < 1$$

u[c(t)]: utilidad instantánea

c(t): consumo de cada individuo.

utilidad en este momento: solo depende del consumo (no se considera el ocio, por ejemplo).

2. <u>Utilidad de la familia: utilidad de cada individuo u[c(t)] por el numero de miembros de la familia L(t)</u>

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] \, \underline{L}(t) dt \quad (1)$$

$$0 < \rho < 1$$

u[c(t)]: utilidad instantánea de cada individuo

c(t): consumo de cada individuo.

L(t): número de miembros de cada familia.

2. <u>Las familias maximizan su utilidad total descontada al momento presente</u>, que es función del tiempo y puede representarse por la expresión (1):

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$

$$0 < \rho < 1$$

Esta expresión es muy similar al Valor Actualizado Neto de un proyecto de inversión, activo financiero o empresa (VAN, VPD)

$$VPD = \frac{CF_1}{1+r} + \frac{CF_2}{(1+r)^2} + \frac{CF_3}{(1+r)^3} + \dots$$

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$
$$0 < \rho < 1$$

ρ: tasa de descuento de los individuos: mide la impaciencia

ρ permite sumar consumos en diferentes momentos del tiempo, los hace homogéneos

Factor de corrección sobre flujos futuros al traerlos al presente: como los agentes son impacientes, los consumos futuros deben descontarse, corregirse a la baja

<u>Intuición</u>: la utilidad total es la suma ponderada de la utilidad de cada instante: la utilidad futura pesa menos que la presente; cuanto más distante, menor peso en la utilidad presente.

$$U(0) = \int_0^\infty e^{-\rho t} u[c(t)] L(t) dt \quad (1)$$
$$0 < \rho < 1$$

Nota: si operáramos en tiempo discreto el factor de descuento sería $\beta = \frac{1}{1+\rho}$

$$U_0 = \sum_{t=0}^{\infty} \beta^t u_t \quad (1')$$

3. La población L crece a la tasa exógena y constante n

$$\frac{\dot{L}}{L} = n$$

$$\dot{L} \equiv \frac{dL(t)}{dt}$$

Si denotamos por L(0) a la población en el momento inicial, la población en el momento t será:

$$L(t) = L(0) e^{nt} \quad (2)$$

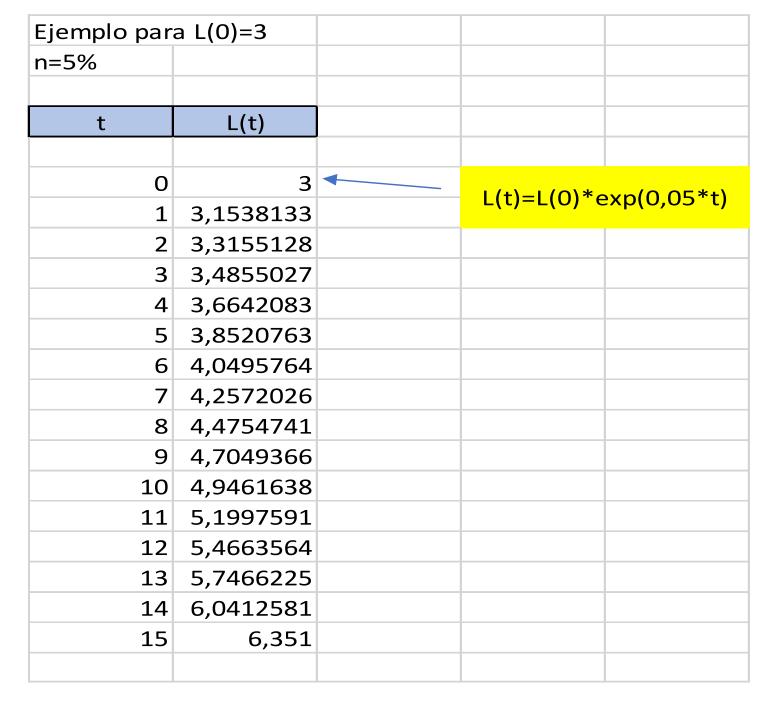
Las familias son idénticas: presentan la misma dinámica que la población total y crecen a la tasa n

El número de miembros o tamaño de la familia en t será

$$L(t) = L(0) e^{nt} \quad (2)$$

Haciendo L(0) =1, la utilidad total puede escribirse como (3)

$$U(0) = \int_0^\infty e^{-(\rho - n)t} u[c(t)] dt \quad (3)$$



4. Restricción sobre los parámetros para que la utilidad no sea infinita:

$$U(0) = \int_0^\infty e^{-(\rho - n)t} u[c(t)] dt \quad (3)$$

$$\lim_{t \to \infty} e^{-(\rho - n)t} u[c(t)] = 0$$

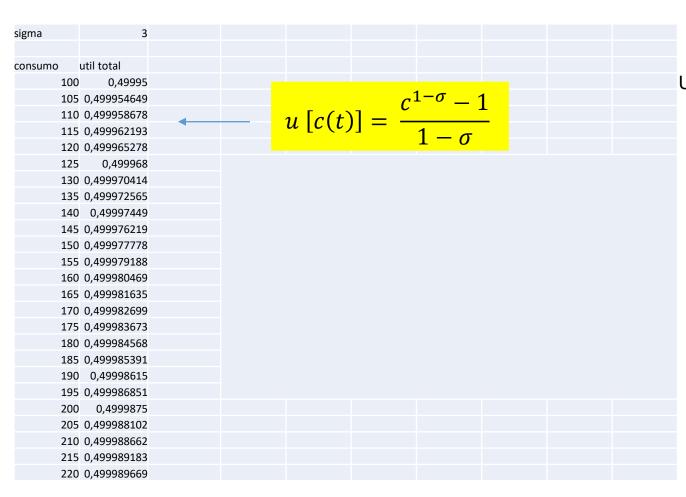
$$\to \lim_{t\to\infty} e^{-(\rho-n)t} = 0 \to -(\rho-n) < 0 \to \rho > n$$

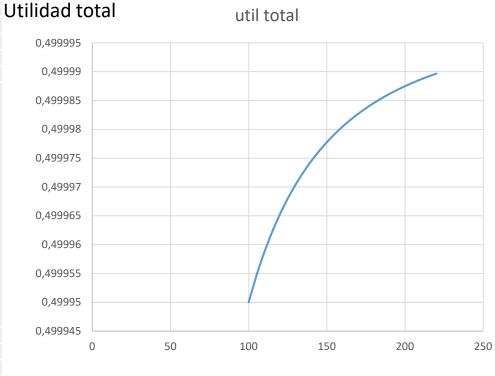
5. <u>La función de utilidad individual</u> es del tipo CRRA, Constant Relative Risk Aversion, de aversión relativa al riesgo constante, o de elasticidad de sustitución intertemporal constante.

$$u\left[c(t)\right] = \frac{c^{1-\sigma} - 1}{1 - \sigma} \quad (4)$$

Donde $\sigma > 0$ mide el grado de concavidad de la función de utilidad en c.

Utilidad total

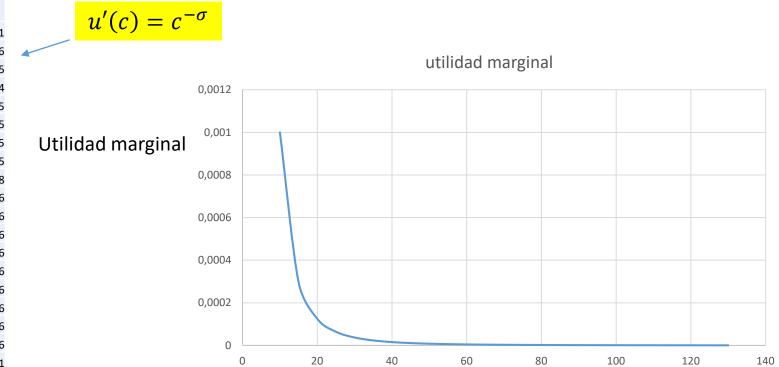




consumo

Utilidad marginal

consumo	utilidad marginal
10	0,001
15	0,000296296
20	0,000125
25	0,000064
30	3,7037E-05
35	2,33236E-05
40	0,000015625
45	1,09739E-05
50	0,000008
55	6,01052E-06
60	4,62963E-06
65	3,64133E-06
70	2,91545E-06
75	2,37037E-06
80	1,95313E-06
85	1,62833E-06
90	1,37174E-06
95	1,16635E-06
100	0,000001
105	8,63838E-07
110	7,51315E-07
115	6,57516E-07
120	5,78704E-07
125	0,000000512
130	·

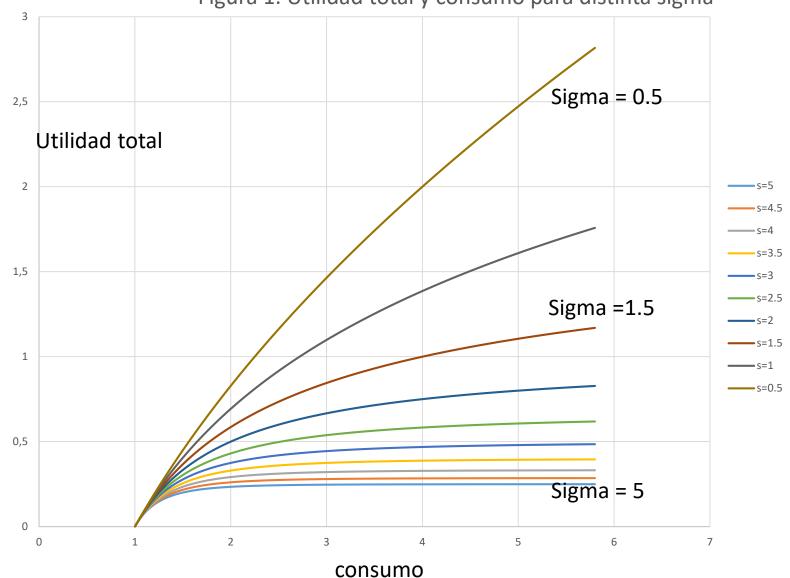


consumo

$$u\left[c(t)\right] = \frac{c^{1-\sigma} - 1}{1 - \sigma} \quad (4)$$

 σ mide el grado de curvatura de la función de utilidad total: para σ elevada, la función de utilidad tiene mucha curvatura

coeficiente de aversión relativa al riesgo de Arrow-Pratt

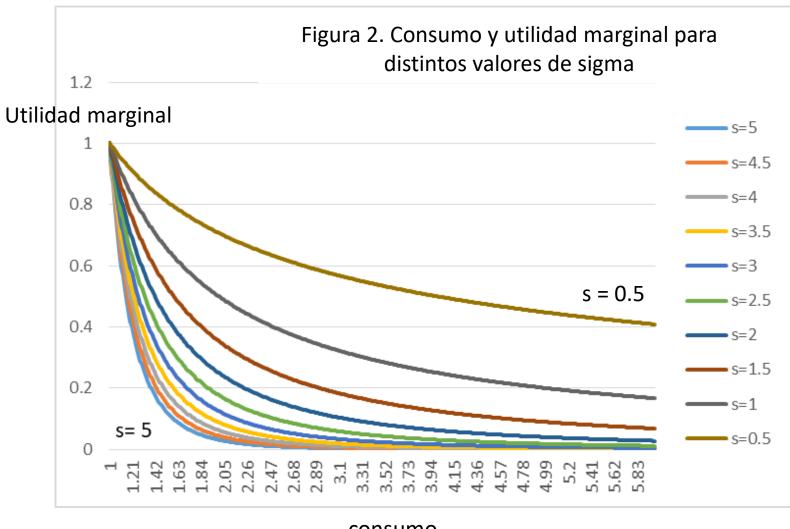


La figura 1 representa la función de utilidad CRRA para distintos valores de sigma.

Cuando sigma es elevada, el cambio en la cantidad consumida supone una gran variación en la utilidad marginal: la pendiente varía mucho

Con valores de sigma más pequeños, la utilidad marginal apenas varía al modificarse el consumo, puesto que la función va siendo cada vez más lineal.

El parámetro sigma



La figura 2 representa la utilidad marginal del consumo en una función de utilidad CRRA para distintos valores de sigma.

Como se veía en la figura anterior, con σ elevada la utilidad marginal varía considerablemente ante variaciones del consumo, lo que no ocurre cuando sigma es más pequeña.

consumo

$$u[c(t)] = \frac{c^{1-\sigma} - 1}{1 - \sigma}$$
 (4)

Implicación: σ mide hasta qué punto el agente está dispuesto a variar el consumo entre periodos: inversa de la elasticidad intertemporal de sustitución entre periodos

Intuición: si σ es elevada, la utilidad marginal varía mucho al variar el consumo y la elasticidad de sustitución entre periodos es pequeña: el agente prefiere un consumo liso, sin muchas oscilaciones en el tiempo, y será reacio a traspasar consumo entre periodos.

Supuestos del modelo: tecnología

1. La economía es <u>cerrada, no tiene sector público ni sector exterior.</u>

Es competitiva, carece de externalidades o rigideces.

Opera a pleno empleo.

Supuestos del modelo: tecnología

2. La economía produce un único bien de acuerdo con una <u>función de producción que emplea</u> trabajo L y capital K suministrados por las familias). Cada individuo ofrece una unidad de trabajo por unidad de tiempo.

Propiedades de la función de producción:

- homogénea de grado uno en trabajo L y capital K
- productividad marginal decreciente de cada factor
- Debe verificar las condiciones de Inada:

$$\lim_{k\to\infty} PMak = 0$$

$$\lim_{k\to 0} PMak = \infty$$

Por ejemplo, Cobb Douglas:

$$Y = A K^{\alpha} L^{(1-\alpha)}$$
 (5)

$$0 < \alpha < 1$$

A: eficiencia en sentido amplio, no crece.

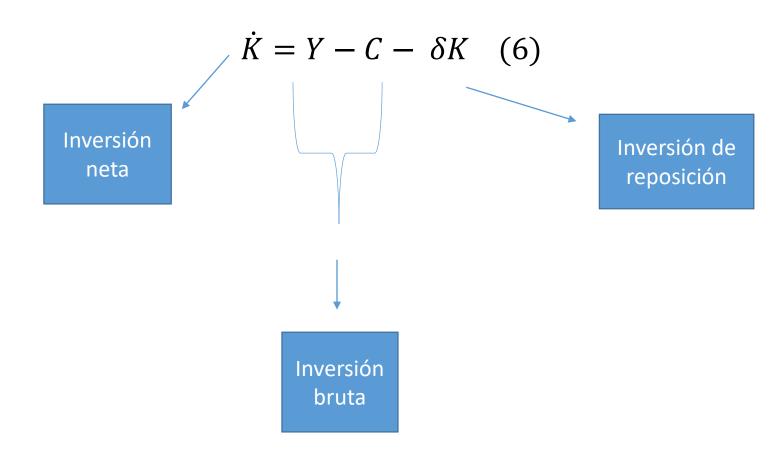
Prescindimos de t en lo posible para aligerar la notación.

Supuestos del modelo: tecnología

3. La tasa de ahorro no es exógena y constante, sino endógena y cambiante, en función de lo que ocurra con otras variables

El bien se destina al consumo o al ahorro en la proporción óptima en cada momento

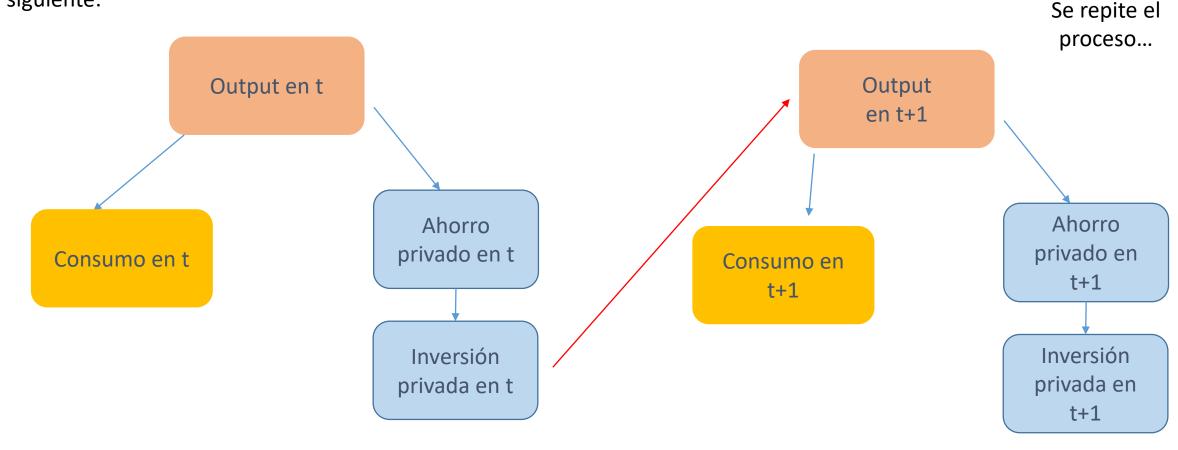
4. Si la tasa de depreciación δ es exógena y constante, entonces la <u>restricción presupuestaria</u> (o ley dinámica del capital) a que está sujeta la economía puede escribirse como (6)



¿Qué significan estos supuestos? Intuición

output se produce con trabajo y capital. Una parte del output se consume. La parte restante se ahorra y se destina a la inversión.

La inversión se añade al stock de capital existente, permitiendo producir output en el momento siguiente:



- Se busca conocer cuál es la pauta del consumo óptima en el tiempo, es decir, una secuencia infinita de valores de c tales que maximizan la utilidad presente descontada verificándose la restricción.
- Es necesario utilizar las técnicas matemáticas apropiadas y algunos procedimientos simplificadores.
- Lo ideal: función que relacione c y k , c = f (k): función de política

Planteamiento del problema:

$$U(0) = \int_0^\infty e^{-(\rho - n)t} u[c(t)] dt$$
 (3)

$$\dot{K} = Y - C - \delta K \quad (6)$$

- (3): función de utilidad de la familia
- (6): restricción presupuestaria para toda la economía

En distintas unidades

<u>Procedemos a escribir la función de producción y la restricción presupuestaria en términos per capita (las variables per capita se denotan por letras en minúscula).</u>

¿Es válido este procedimiento? Sí, porque la economía es competitiva

Como Y es homogénea de grado 1 y los rendimientos a escala son constantes (el tamaño de la economía es irrelevante), el producto de una economía compuesta por diez unidades de L y K es equivalente al de diez economías que disponen de una unidad de L y K cada una.

		1 L 1 K	1 L 1 K
10.1		1 L 1 K	1 L 1 K
10 L 10 K	Equivale a	1 L 1 K	1 L 1 K
		1 L 1 K	1 L 1 K
		1 L 1 K	1 L 1 K

Magnitudes agregadas

Magnitudes per capita

X

$$x \equiv \frac{X}{L}$$

$$Y = AK^{\alpha}L^{1-\alpha}$$

$$y = Ak^{\alpha}$$

$$\dot{K} = Y - C - \delta K$$

$$\dot{k} = y - c - (\delta + n)k$$

Planteamiento del problema ahora:

$$\max U(0) = \int_0^\infty e^{-(\rho - n)t} \frac{c^{1 - \sigma} - 1}{1 - \sigma} dt \quad (7)$$

sujeto a
$$\dot{k} = y - c - (\delta + n)k$$
 (8)

Condición inicial: k(0) > 0 (9)

- Hamiltoniano en el momento inicial: (10).
- Variable de control (aquella que pueden modificar los agentes): c (t)
- Variable de estado (evoluciona como consecuencia del funcionamiento del modelo): k(t)
- variable de coestado, precio sombra del capital, equivale al multiplicador de Lagrange, en versión dinámica: $\lambda(t)$

$$H = e^{-(\rho - n)t} \frac{c^{1 - \sigma} - 1}{1 - \sigma} + \lambda [A k^{\alpha} - c - (\delta + n)k]$$
 (10)

• Las condiciones de primer orden (CPO) son:

$$H_c = 0$$
$$-H_k = \dot{\lambda}$$

Condición de transversalidad: $\lim_{t \to \infty} \lambda_t k_t = 0$

Intuición similar a condición de Kuhn
Tucker: la riqueza al final de la vida debe valer 0, lo que implica que o bien no queda capital o bien no tiene valor (λ=0)

Las CPO son condiciones necesarias y suficientes para máximo si la función de utilidad es cóncava en c y la función de producción es cóncava en K y L.

DUED

• En este caso, las CPO son:

El valor marginal del consumo debe igualar el valor marginal de la inversión

$$H_c = 0 \longrightarrow e^{-(\rho - n)t} c^{-\sigma} = \lambda \quad (11)$$

$$-H_k = \dot{\lambda} \longrightarrow -\lambda [A\alpha k^{\alpha - 1} - (\delta + n)] = \dot{\lambda} \quad (12)$$

• Tomando logaritmos en (11):

$$-(\rho - n)t - \sigma \ln c = \ln \lambda \quad (13)$$

Diferenciando (13) con respecto al tiempo

$$-(\rho - n) - \sigma \frac{\dot{c}}{c} = \frac{\lambda}{\lambda} \quad (14)$$

• Sustituyendo $\frac{\dot{\lambda}}{\lambda}$ por su expresión en (12)

$$-(\rho - n) - \sigma \frac{\dot{c}}{c} = -A\alpha k^{\alpha - 1} + \delta + n \quad (15)$$

Despejando la tasa de crecimiento del consumo en (15) se obtiene la <u>ecuación de Euler o regla de Keynes-</u>
 Ramsey

$$\frac{\dot{c}}{c} = \frac{1}{\sigma} \left(A\alpha k^{\alpha - 1} - \rho - \delta \right) \quad (16)$$

Interpretación:

$$\frac{\dot{c}}{c} = \frac{1}{\sigma} \left(A\alpha k^{\alpha - 1} - \rho - \delta \right) \quad (16)$$

El consumo crece a una tasa positiva cuando la productividad marginal del capital, neta de depreciación, es mayor que la tasa de descuento de los agentes

Si $(PmaK - \delta) > \rho$, se invierte: el stock de k y el output crecen;

Si $(PmaK - \delta) < \rho$, se desinvierte: el stock de k y el output decrecen.

A mayor elasticidad intertemporal de sustitución, $1/\sigma$, mayor reacción del consumo en el tiempo a la diferencia entre Pmak – δ y la tasa de descuento ρ .

Interpretación:

$$\frac{\dot{c}}{c} = \frac{1}{\sigma} \left(A\alpha k^{\alpha - 1} - \rho - \delta \right) \quad (16)$$

Intuición:

- La tasa de crecimiento depende críticamente de la relación entre rentabilidad del ahorro e impaciencia:
 - Si la productividad marginal del K es elevada, y mayor que ρ, las familias poseen incentivos para <u>no consumir</u> <u>hoy sino ahorrar, y utilizar esos ahorros para aumentar el stock de k</u>.
 - Si lo hacen así, en el futuro capital y output serán mayores, lo que les permitirá consumir más.

Análisis del estado estacionario

Objetivo: conocer la evolución dinámica del sistema

$$\dot{k} = y - c - (\delta + n)k \quad (8)$$

$$\frac{\dot{c}}{c} = \frac{1}{\sigma} \left(A\alpha k^{\alpha - 1} - \rho - \delta \right) \quad (16)$$

Nos preguntamos si tiene solución y si la solución es estable.

Utilizamos el método gráfico del diagrama de fases, útil por su sencillez relativa

- El diagrama de fases permite eliminar la consideración explícita del tiempo.
- En el diagrama de fases el tiempo se representa solo de modo implícito, por medio de flechas.
- De esta forma se reformula el análisis en términos de las variables de interés, en nuestro caso la variable de control c y la variable de estado k, lo que reduce notablemente la complejidad del análisis

Apéndice: funciones con variables agregadas y per capita

חשפם

La variable x en términos per capita se define como $x \equiv \frac{X}{L}$

Dada una función de producción en términos agregados (1), la nueva función de producción per capita será (1').

Recordando que L, K son función de t y operando, la expresión equivalente a (2) en términos per capita será (6).

$$Y = K^{\alpha} L^{1-\alpha}(1) \rightarrow y = k^{\alpha} (1')$$

$$\dot{K} = sY - \delta K \qquad (2)$$

$$\dot{k} = \frac{d}{dt} \left(\frac{K}{L} \right) = \frac{\dot{K} L - K \dot{L}}{L^{2}} = \frac{\dot{K}}{L} - \frac{K \dot{L}}{L L} \qquad (3)$$

$$\frac{\dot{K}}{L} = s \frac{Y}{L} - \delta \frac{K}{L} = s y - \delta k \qquad (4)$$

$$\dot{k} = s y - \delta k - nk \qquad (5)$$

$$\dot{k} = s y - (\delta + n)k \qquad (6)$$
Ecaholication

Ecuación equivalente a (2), ahora en términos per capita