Tema 7. Kolmogorov-Smirnov y Lilliefors

Dr. David Castilla Espino
Inferencia Estadística
CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín"

Referencias

- Casas, JM, C. Sánchez & P. Cortiñas (2018): Inferencia Estadística para Economía. Editorial Universitaria Ramón Areces, Madrid (Capítulo 7).
- Novales (1997), Ruiz Maya & Martín Pliego (1999),...

Contraste de Kolmogorov-Smirnov

- El contraste de Kolmogorov-Smirnov es un contraste no paramétrico de bondad del ajuste.
- Idea básica: Se utiliza para contrastar si un conjunto de datos muestrales pueden considerarse procedentes de una distribución determinada (normal, exponencial...).
- Hipótesis del contraste:
 - H_0 : $F_n(X) = F_0(X)$ H_0 : $F_n(X) \ge F_0(X)$ H_0 : $F_n(X) \le F_0(X)$
 - H_1 : $F_n(X) \neq F_0(X)$ H_1 : $F_n(X) < F_0(X)$ H_1 : $F_n(X) > F_0(X)$
- **Uso**: Es una alternativa a la prueba Chi-cuadrado cuando el modelo propuesto bajo la hipótesis nula es de tipo continuo y el tamaño muestral es pequeño. Este contraste no requiere que las observaciones muestrales se agrupen en intervalos o clases; aunque exige que los parámetros de la distribución teórica sean conocidos.

Contraste de Kolmogorov-Smirnov

■ **Lógica**: Habrá evidencias para rechazar la hipótesis nula cuando la discrepancia medida por medio de la diferencia entre $F_n(X)$ y $F_0(X)$ sea lo suficientemente grande.

Pasos para resolución:

- Cálculo de la $F_n(X) = N(x)/n$.
- Cálculo de la $F_0(X)$ en los valores de la muestra de datos.
- Cálculo de $|F_n(X) F_0(X)|$, $F_0(X) F_n(X)$ o $F_n(X) F_0(X)$ según el contraste sea bilateral, unilateral por la izquierda o unilateral por la derecha.
- Cálculo del estadístico de contraste y determinación de la región crítica conforme a la tabla que se muestra a continuación:

H ₀	H ₁	Estadísitco	Región crítica
$F_n(X)=F_0(X)$	$F_n(X) \neq F_0(X)$	$D_n=máx F_n(X)-F_0(X) $	$D_n > D_\alpha$ donde $P(D_n > D_\alpha / H_0) = \alpha$
$F_n(X) \ge F_0(X)$	$F_n(X) < F_0(X)$	$D_n^+ = máx[F_0(X)-F_n(X)]$	$D_n^+ > D_\alpha$ donde $P(D_n^+ > D_\alpha / H_0) = \alpha$
$F_n(X) \leq F_0(X)$	$F_n(X)>F_0(X)$	$D_n^-=máx[F_n(X)-F_0(X)]$	$D_n^->D_\alpha$ donde $P(D_n^->D_\alpha/H_0)=\alpha$

Contraste de normalidad de Lilliefors

- El contraste de normalidad de Lilliefors es un contraste no paramétrico de bondad del ajuste.
- Idea básica: Se utiliza para contrastar si un conjunto de datos muestrales pueden considerarse procedentes de una distribución Normal.
- Hipótesis del contraste:
 - H_0 : $F_n(X) = F_0(X)$ tal que $X \rightarrow N(\mu, \sigma)$.
 - H_1 : $F_n(X) \neq F_0(X)$ tal que $X \rightarrow N(\mu, \sigma)$.
- **Uso**: Esta prueba se utiliza cuando el modelo propuesto se caracteriza por que la hipótesis nula Normal, el tamaño muestral es pequeño y los parámetros de la distribución son desconocidos. Este contraste no requiere que las observaciones muestrales se agrupen en intervalos o clases.

Contraste de normalidad de Lilliefors

■ **Lógica**: Habrá evidencias para rechazar la hipótesis nula cuando la discrepancia medida por medio de la diferencia entre $F_n(X)$ y $F_0(X)$ sea lo suficientemente grande.

Pasos para resolución:

- Cálculo de la F_n(X) = N(x)/n.
- Cálculo de la F₀(X) en los valores de la muestra de datos. Se requiere tipificar la variable X si se va a emplear las tablas de la distribución Normal Tipificada.
- Cálculo de $|F_n(X) F_0(X)|$.
- Cálculo del estadístico de contraste y determinación de la región crítica conforme a la tabla que se muestra a continuación:

Contraste de normalidad de Lilliefors				
H ₀	H ₁	Estadísitco	Región crítica	
$F_n(X)=F_0(X)$	$F_n(X) \neq F_0(X)$	$D'_n=max F_n(X)-F_0(X) $	$D'_n > D'_\alpha$ donde $P(D'_n > D'_\alpha / H_0) = \alpha$	

Ejemplo

Compruebe si la edad de los habitantes de un pequeño pueblo se distribuye de acuerdo con una familia de distribuciones de probabilidad U(a=0, b=100) y N (μ , σ) empleando los contrastes de hipótesis no paramétricos estudiados. Utilice para ello la muestra aleatoria simple de edades 40 habitantes del pueblo que se muestra a continuación.

 5
 8
 11
 13
 16
 20
 20
 28
 30
 36

 41
 41
 44
 45
 46
 53
 53
 54
 56
 57

 58
 60
 63
 65
 71
 72
 77
 85
 87
 89

 90
 90
 91
 92
 95
 95
 97
 98
 98
 100

Nótese que la distribución de probabilidad U(a=0, b=100) tiene la siguiente F(X):

$$F(X) = \begin{cases} \frac{1}{x} & x \ge 100 \\ \frac{100}{0} & x \in (0, 100) \\ 0 & x \le 0 \end{cases}$$

Dr. David Castilla Espino CA UNED Huelva