PRODUCTO ESCALAR

Definición

Una operación

$$\bullet: V \times V \to R$$

se dice que es un *producto escalar*, si $\forall \vec{u}, \vec{v}, \vec{w} \in V$ y $\forall \lambda \in R$, se verifican las propiedades:

- 1. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- 2. $(\overrightarrow{\lambda u}) \bullet \overrightarrow{v} = \lambda (\overrightarrow{u} \bullet \overrightarrow{v})$
- 3. $(\vec{u} + \vec{v}) \bullet \vec{w} = \vec{u} \bullet \vec{w} + \vec{v} \bullet \vec{w}$
- 4. $\vec{u} \cdot \vec{u} \ge 0$
- 5. $\vec{u} \cdot \vec{u} = 0 \Leftrightarrow \vec{u} = \vec{0}$

Un espacio vectorial con producto escalar definido sobre él se llama ESPACIO VECTORIAL EUCLIDEO

Comentario: La denominación de Euclideo se reserva para los espacios de dimensión finita, como los que se estudian en este curso.

Comentario: El producto escalar es una forma bilineal, simétrica.

Ejemplos

1. En el espacio de los segmentos orientados.

El producto escalar de dos vectores es el producto de los módulos por el coseno del ángulo que forman.

$$\vec{x} \cdot \vec{y} = |\vec{x}| |\vec{y}| \cos(\vec{x}, \vec{y})$$

(Motivación: El trabajo que realiza una fuerza al hacer un desplazamiento)

2. En R^3

$$(x_1, x_2, x_3) \bullet (y_1, y_2, y_3) = x_1 y_1 + x_2 y_2 + x_3 y_3$$

3. En el espacio de las funciones continuas en el intervalo [a, b]

$$f \bullet g = \int_{a}^{b} f(x)g(x)dx$$

1

Comentario: Este producto escalar es la generalización natural del ejemplo anterior.

Expresión analítica del producto escalar

Comentario: Por centrar ideas, consideraremos el espacio vectorial R^3

Consideremos una base del espacio, $B = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$, de tal manera que se identifican los vectores con sus coordenadas

Si

$$\overrightarrow{x} = x_1 \overrightarrow{e_1} + x_2 \overrightarrow{e_2} + x_3 \overrightarrow{e_3} \qquad \overrightarrow{y} = y_1 \overrightarrow{e_1} + y_2 \overrightarrow{e_2} + y_3 \overrightarrow{e_3}$$

Por las propiedades de linealidad del producto escalar, la expresión analítica del producto escalar es

$$\vec{x} \bullet \vec{y} = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} \vec{e_1} \bullet \vec{e_1} & \vec{e_1} \bullet \vec{e_2} & \vec{e_1} \bullet \vec{e_3} \\ \vec{e_2} \bullet \vec{e_1} & \vec{e_2} \bullet \vec{e_2} & \vec{e_2} \bullet \vec{e_3} \\ \vec{e_3} \bullet \vec{e_1} & \vec{e_3} \bullet \vec{e_2} & \vec{e_3} \bullet \vec{e_3} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

La matriz
$$G = \begin{pmatrix} \overrightarrow{e_1} \bullet \overrightarrow{e_1} & \overrightarrow{e_1} \bullet \overrightarrow{e_2} & \overrightarrow{e_1} \bullet \overrightarrow{e_2} \\ \overrightarrow{e_2} \bullet \overrightarrow{e_1} & \overrightarrow{e_2} \bullet \overrightarrow{e_2} & \overrightarrow{e_2} \bullet \overrightarrow{e_2} \\ \overrightarrow{e_3} \bullet \overrightarrow{e_1} & \overrightarrow{e_3} \bullet \overrightarrow{e_2} & \overrightarrow{e_3} \bullet \overrightarrow{e_3} \end{pmatrix} = \begin{pmatrix} g_{ij} \end{pmatrix}$$
 se llama *matriz de Gram*

Cometario: La matriz de Gram es simétrica, los elementos de la diagonal son positivos, y es definida positiva

Usando la notación matricial

$$\vec{x} \bullet \vec{y} = X^T G Y$$

Cambio de base

Supongamos un cambio de base con matriz de paso P de modo que

$$X = PX'$$
 $Y = PY'$

Entonces,

$$\vec{x} \bullet \vec{y} = X^T G Y = X^T P^T G P Y'$$

y, por tanto,

$$G'=P^TGP$$

Comentario: Eligiendo adecuadamente la base se puede conseguir que la matriz G sea diagonal.

Comentario: Observar la diferencia que hay con esta la fórmula y la que usábamos en el cambio de base en un endomorfismo.

Normas, distancias y ángulos

El producto escalar permite calcular, normas, distancias y ángulos

$$\left\| \vec{x} \right\| = \sqrt{\vec{x} \bullet \vec{x}}$$

$$d(\vec{x}, \vec{y}) = \left\| \vec{x} - \vec{y} \right\|$$

$$\cos(\vec{x}, \vec{y}) = \frac{\vec{x} \cdot \vec{y}}{\|\vec{x}\| \|\vec{y}\|}$$

Definición

Se dice que dos vectores son *ortogonales* si su producto escalar es nulo

$$\vec{x} \perp \vec{y} \Leftrightarrow \vec{x} \cdot \vec{y}$$

Bases ortonormales

Definición

Una base $B = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ se dice que es *ortonormal* si $\{\vec{e}_1 \bullet \vec{e}_1 = \vec{e}_2 \bullet \vec{e}_2 = \vec{e}_3 \bullet \vec{e}_3 = 1\}$ $\{\vec{e}_1 \bullet \vec{e}_2 = \vec{e}_1 \bullet \vec{e}_3 = \vec{e}_2 \bullet \vec{e}_3 = 0\}$

$$\begin{cases} \overrightarrow{e_1} \bullet \overrightarrow{e_1} = \overrightarrow{e_2} \bullet \overrightarrow{e_2} = \overrightarrow{e_3} \bullet \overrightarrow{e_3} = 1 \\ \overrightarrow{e_1} \bullet \overrightarrow{e_2} = \overrightarrow{e_1} \bullet \overrightarrow{e_3} = \overrightarrow{e_2} \bullet \overrightarrow{e_3} = 0 \end{cases}$$

Comentario: Respecto de una base ortonormal la matriz de Gram es la Identidad

$$G = \begin{pmatrix} \overrightarrow{e_1} \bullet \overrightarrow{e_1} & \overrightarrow{e_1} \bullet \overrightarrow{e_2} & \overrightarrow{e_1} \bullet \overrightarrow{e_3} \\ \overrightarrow{e_2} \bullet \overrightarrow{e_1} & \overrightarrow{e_2} \bullet \overrightarrow{e_2} & \overrightarrow{e_2} \bullet \overrightarrow{e_3} \\ \overrightarrow{e_3} \bullet \overrightarrow{e_1} & \overrightarrow{e_3} \bullet \overrightarrow{e_2} & \overrightarrow{e_3} \bullet \overrightarrow{e_3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Si $B = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ es una base *ortonormal*, cualquier vector

$$\vec{x} = \vec{x_1} \vec{e_1} + \vec{x_2} \vec{e_2} + \vec{x_3} \vec{e_3}$$

3

Las coordenadas de \vec{x} se obtienen multiplicándolo escalarmente por los elementos de la base

$$\vec{x} \bullet \vec{e_1} = x_1 \vec{e_1} \bullet \vec{e_1} \Rightarrow x_1 = \frac{\vec{x} \bullet \vec{e_1}}{\vec{e_1} \bullet \vec{e_1}}$$

$$\vec{x} \bullet \vec{e_2} = x_2 \vec{e_2} \bullet \vec{e_2} \Rightarrow x_1 = \frac{\vec{x} \bullet \vec{e_2}}{\vec{e_2} \bullet \vec{e_2}}$$

$$\vec{x} \bullet \vec{e_3} = x_3 \vec{e_3} \bullet \vec{e_3} \Rightarrow x_3 = \frac{\vec{x} \bullet \vec{e_3}}{\vec{e_3} \bullet \vec{e_3}}$$