Ejercicio 4 El endomorfismo f de \mathbb{R}^2 definido por $f(x_1, x_2) = (x_1, -x_2)$ verifica: A) La imagen por f del conjunto de todos los vectores del sje de las x_2 es el subespacio formado por los vectores del sje de las x_1 ; B) $\{(1, -1), (0, 1)\}$ es una base de \mathbb{R}^2 formada por vectores propios; C) La matriz identidad es una matriz de paso para la diagonalización del endomorfismo; D) Ninguna de ellas.

Respuesta

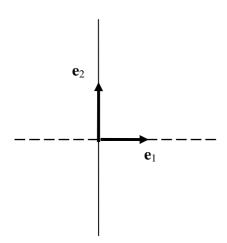
Respecto de la base canónica la expresión analítica del endomorfismo f es:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$$

Comentario. Las columnas de la matriz del endomorfismo son los transformados de la base. En nuestro caso, f(1, 0) = (1, 0) y f(0, 1) = (0, -1). Es decir,

$$f(\mathbf{e}_1) = \mathbf{e}_1 \qquad f(\mathbf{e}_2) = -\mathbf{e}_2$$

Comentario: El endomorfismo $f: \mathbb{R}^2 \to \mathbb{R}^2$ se interpreta geométricamente como una simetría respecto del eje x_1 .



Comentario: Viendo que A es una matriz diagonal observamos que son autovalores de f $\lambda = 1$ $\lambda = -1$

y sis correspondientes autoespacios son

$$E(1) = \langle \mathbf{e}_1 \rangle$$
 $E(-1) = \langle \mathbf{e}_2 \rangle$

A) El conjunto de todos los vectores del eje de las x_2 es el conjunto generado por el segundo elemento de la base $\langle \mathbf{e}_2 \rangle$ Con lo cual la imagen de este conjunto es

$$f(\langle \mathbf{e}_2 \rangle) = \langle f(\mathbf{e}_2) \rangle = \langle -\mathbf{e}_2 \rangle = \langle \mathbf{e}_2 \rangle$$

Esto significa que el eje x_2 es *invariante* por la aplicación f. Para cualquier vector \mathbf{x} del eje x_2 se verifica que $f(\mathbf{x}) = -\mathbf{x}$

Por consiguiente, A) no es cierta.

B) La matriz A es diagonal. Los autovalores son $\lambda = 1$ y $\lambda = -1$. Los correspondientes vectores propios son $\mathbf{e}_1 = (1,0)$ y $\mathbf{e}_2 = (0,1)$

Por consiguiente, B) no es cierta

C) Una base formada por vectores propios de $B' = \{\mathbf{e}_1, \mathbf{e}_2\}$. Por tanto, la matriz de paso es la matriz identidad.

Comentario: La matriz de paso es la que tiene por columnas los elementos de la nueva base.

Como la matriz ya es diagonal, la expresión diagonal A' verifica que

$$A = I^{-1} A I$$

Por consiguiente, C) es la respuesta correcta.